A remark on Edgar's extremal integral representation theorem
نویسندگان
چکیده
منابع مشابه
A Remark on Zoloterav’s Theorem
Let n ≥ 3 be an odd integer. For any integer a prime to n, define the permutation γ a,n of {1,. .. , (n − 1)/2} by γ a,n (x) = n − {ax} n if {ax} n ≥ (n + 1)/2, {ax} n if {ax} n ≤ (n − 1)/2, where {x} n denotes the least nonnegative residue of x modulo n. In this note, we show that the sign of γ a,n coincides with the Jacobi symbol a n if n ≡ 1 (mod 4), and 1 if n ≡ 3 (mod 4).
متن کاملRemark on a Theorem of Lindström
In a recent paper LindstrSm [I] proves a theorem on finite sets and he also proves a transfinite extension. In this note we only concern ourselves with the transfinite case of Lindstriim’s theorem. He in fact proves the following theorem: Let / Y I = K be an infinite set, and let A,, l K, be subsets of Y. Then for every p -=z m there are p disj...
متن کاملA remark on the Erdös-Szekeres theorem
The Erdős–Szekeres theorem states that for any , any sufficiently large set of points in general position in the plane contains points in convex position. We show that for any and any finite sequence ! ! #" , with #$% & ( ')(+*, ! ! ), any sufficiently large set of points in general position in the plane contains either an empty convex ) gon or convex polygons . ! ! /. " , where 0 . $ 0,(& $ an...
متن کاملA remark on asymptotic enumeration of highest weights in tensor powers of a representation
We consider the semigroup $S$ of highest weights appearing in tensor powers $V^{otimes k}$ of a finite dimensional representation $V$ of a connected reductive group. We describe the cone generated by $S$ as the cone over the weight polytope of $V$ intersected with the positive Weyl chamber. From this we get a description for the asymptotic of the number of highest weights appearing in $V^{otime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1978
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-63-3-259-265